Binary Black Hole Accretion

Andrew MacFadyen (NYU)
Brian Farris (NYU/Columbia), Paul Duffell (Berkeley),
Zoltan Haiman (Columbia)

Farris+ (2013, 2015ab)

Physical Picture

- All bulge galaxies have SMBH at center with $M \sim 10^5 10^9 M_{\odot}$
- Galaxy mergers → formation of massive BH binary in merged remnant.
- Separation decreases by:
 - dynamical friction
 - gravitational slingshot interactions
 - gravitational radiation
- The Final Parsec Problem is Not a Problem? (see e.g. Preto et al, 2011)
- Circumbinary disk forms

Motivation

- GWs from SMBH binaries detectable by a eLISA-like instrument during inspiral.
- May be detectable by Pulsar Timing Arrays for massive ($\sim 10^8 10^9 M_{\odot}$) binaries at $z \approx 1$.
- Gaseous accretion flow around binary may be a source of detectable EM radiation
- Help with source localization
- Standard Sirens (distance from GWs, redshift from EM)
- Learn about SMBH merger rates.

General Picture

- Viscous stresses in the disk transport angular momentum outward and allow gas to migrate inward
- Tidal torques from the binary add angular momentum and drive gas outward
- Viscous stresses balance balance tidal torques at inner edge of disk $(r_{edge} \approx 2a)$
- Binary carves out a low-density cavity surrounded by a circumbinary disk.
- Quasi-equilibrium state can be maintained provided $t_{vis} \ll t_{gw}$ (pre-decoupling epoch)
- When t_{gw} ≤ t_{vis} (i.e. GW dominated regime), binary inspiral must be included in simulations.

Questions

- How hollow is the cavity? Is the accretion rate suppressed by the presence of a binary?
- Does the binary leave an imprint in the accretion rate?
- How is the accreted mass divided between the primary and the secondary?
- How are continuum spectra modified by presence of a binary?

1D

- Examples:
 - Goldreich & Tremaine 1980
 - Artymowicz & Lubow 1994
 - Milosavljević and Phinney 2005
 - Haiman et al. 2009
 - Tanaka & Menou 2010
 - Liu & Shapiro 2010
 - Kocsis et al. 2012
 - Tanaka 2013
- Use approximate angle-averaged tidal torque formulae.
- Useful for probing qualitative features of accretion.
- Fails to capture important, nonaxisymmetric features such as accretion streams.

2D

- Newtonian
 - MacFadyen & Milosavljević 2008
 - Cuadra et al. 2009
 - Roedig & Sesana, 2012
 - D'Orazio et al. 2012
 - Farris et al. 2013
- Useful for predecoupling, widely separated binaries.
- Can accomodate high res., many orbits.

3D

- Newtonian:
 - Shi et al. 2012
 - Roedig et al. 2012
- Relativistic:
 - Bode et al 2011
 - Farris et al. 2012
 - Noble et al. 2012
 - Giacomazzo et al. 2012
- Computationally expensive.
- Often require excised inner regions, thick disks, short simulations, etc.

1D model

- Analytic approx. to sum over Lindblad resonances $\Lambda = \Lambda(q, M, r, a, h)$ (Armitage and Natarajan, 2002)
- $\dot{M} \equiv \dot{M}/3\pi \nu_{out} \Sigma_{out}$
- g̃ ≡ T_{tid}(a)/T_{vis}(a)
- Transition corresponds to q ~ 4 × 10⁻³
- Seems to show accretion choked off for modest mass ratios.
- Does this picture hold when we move to 2D and drop assumption of axisymmetry?

DISCO - Duffell & MacFadyen 2012, 2013

- Solves (Magneto)Hydrodynamics equations
- Uses conservative, shock-capturing finite-volume methods
- Effectively "Lagrangian", as cells are able to move with fluid
- Minimizes advection errors, allows for longer timesteps

MacFadyen & Milosavljevic (2008) w/ DISCO A. MacFadyen (NYU)

- Include inner cavity to track accretion onto each BH and account for important gas dynamics near the BHs
- High-resolution, shock-capturing, conservative finite volume techniques needed to accurately treat interacting accretion streams.
- Evolove longer than a viscous timescale to reach quasi-steady state.
- Simulate a range of mass-ratios

- Keep aspect ratio of cells ≈ 1, concentrate resolution near BHs.
- Locally isothermal disk with h/r ≈ 0.1
- α -law viscosity $\nu = \alpha c_s^2 \Omega_k^{-1}$, with $\alpha = 0.1$.
- include cavity in computational domain, treat accretion by adding sink term to continuity equation:

$$\left(\frac{d\Sigma}{dt}\right)_{sink,i} = -\frac{\Sigma}{t_{vis,i}}$$

 Run simulation for longer than a viscous time at the cavity edge, so that quasi-equilibrium state is reached.

$$t_{sim} \gtrsim t_{vis}(r_{edge}) \sim 300 \left(\frac{r_{edge}}{2a}\right)^{3/2} t_{bin}$$

Vary mass ratio in range 0.026 ≤ q ≤ 1.0.

Farris, Duffell, MacFadyen & Haiman (2013)

- Consensus emerging that accretion is not significantly reduced by presence of binary.
- Consistent with some previous studies (Roedig et al. 2011, Shi et al. 2012, Noble et al. 2012)
- More simulations needed to verify that this holds at smaller h/r.
- \$\langle \bar{M} \rangle \langle \bar{M} \rangle \langle \bar{M}_0 \rangle\$ approaches 1 for small \$q\$, as expected.

- Eccentric inner cavity for large mass ratio binaries seen in many calculations, e.g.
 - MacFadyen and Milosavljević 2008
 - D'Orazio et al. 2012
 - Shi et al. 2012
 - Noble et al. 2012
 - Farris et al. 2012
- A fraction of gas in each stream does not accrete onto BH, but rather is flung outward.
- This fraction impacts cavity wall on the opposite side from which it entered.
- If one stream is slightly larger it will push the opposity wall more, weakening the opposite stream.
- ⇒ the imbalance grows.

Farris+ (2013)

A. MacFadyen (NYU)

Artymowicz & Lubow 1994 (cyan circles) -0.5-1.0-1.51.5 1.0 ĝ 0.0 -0.5-1.0-1.5

Accretion timescale

$$\begin{array}{lcl} t_{vis,md} & = & \frac{2}{3} \frac{r_i^2}{\nu_i} \\ & = & 42 \left(\frac{\alpha}{0.1}\right)^{-1} \left(\frac{h/r}{0.1}\right)^{-2} \left(\frac{r_{md}}{0.25a}\right)^{3/2} \left(\frac{q}{0.1}\right)^{-1/2} t_{bin} \end{array}$$

 $t_{vis,md} > t_{bin} \Rightarrow$ minidisks are persistent.

caveats

- We have assumed $h/r \sim 0.1$ everywhere, including minidisks. If they are actually much hotter the accretion timescale is shortened.
- We have assumed α = 0.1 everywhere. MHD simulations have indicated it may be larger near inner disk edge, and possibly inside minidisks as well.
- Binary eccentricity may reduce sizes of minidisks, leading to shorter accretion timescale.

Farris+ (2013)

Farris+ (2013)
Observed Period may be LOWER than binary period

Mini-disks damp accretion variability

- Compare actual accretion rate with rest mass flux through surface at r = a.
- Flux through r = a much more variable.
- Time averaged M is unchanged (expected for quasi-steady state).
- Exaggerates Ω = 2Ω_{bin} component.

Binaries Driven toward Equal Mass

$$\frac{dq}{dt} = \frac{d}{dt} \left(\frac{M_2}{M_1} \right) = \frac{M_2}{M_1} \left(\frac{\dot{M}_2}{M_2} - \frac{\dot{M}_1}{M_1} \right)$$

$$\dot{M}_2/M_2 > \dot{M}_1/M_1 \Rightarrow q$$
 increasing

- Ratio > 1 for all cases. Binary driven toward equal mass.
- Consistent with previous studies (Hayasaki et al. 2007, Cuadra et al. 2009, Roedig et al. 2011,2012, Hayasaki et al. 2012)
- Possible that ratio < 1 for q less than some q₀, leading to bimodal mass-ratio distribution.

Radiative Cooling

- Dynamics are sensitive to t_{vis} of minidisks
- Isothermal prescription locks h/r to match that of circumbinary disk
- Need to self-consistently balance viscous heating and shock heating with radiative cooling
- Optically thick disk $\Rightarrow q_{cool} = \frac{4\sigma}{3\tau}T^4$
- Assume electron scattering opacity
- Neglect radiation pressure ⇒ P = (Σ/m_B)kT
- Include viscous heating source term in energy evolution equation
- Test that scheme can reproduce Shakura-Sunyaev solution

Farris+ (2015a)

A. MacFadyen (NYU)

Farris+ (2015)

A. MacFadyen (NYU)

Decoupling

- Surface brightness at (left to right) $t t_m = -0.1t_{vis}, 0, 3t_{vis}$.
- Minidisks remain present at $t t_m = -0.1 t_{vis}$
- Relaxes to approximate Shakura-Sunyaev solution after few t_{vis}.

Accretion Rate

- Significant accretion remains at $t t_m = -t_{vis}$.
- Much more variable prior to merger.
- Returns to ≈
 Shakura-Sunyaev rate on viscous timescale, as expected.

Farris+ ArXiv: 1409.5124

Summary

- First simulations of circumbinary disk accretion using moving-mesh, finite-volume code.
- M onto binary not reduced. Gas efficiently enters cavity along streams.
- For each mass-ratio, persistent mini-disks are formed. Accretion timescale of mini-disks exceed binary orbital timescale.
- Mini-disk sizes in rough agreement with analytic predictions (Artymowicz & Lubow 1994).
- Significant periodicity in M for q ≥ 0.1.
- Binary torques can excite eccentricity in inner disk and create overdense lump. Orbital frequency of lump can dominate M periodograms.
- For each mass-ratio considered, accretion rate onto secondary is large enough to cause q to increase.
- Emission can be enhanced in cavity region relative to single BH case
- Continuum spectra steepen in X-rays due to hot emission from minidisks and streams
- "Decoupling" likely not as abrupt as previously assumed. Accretion persists until shortly before merger.